

今号では、 SDGsの達成に向けた取り組みや研究の視点で、 まずは、 それぞれの目標について、世界と日本の状況を解説した後、 クリーンエネルギーの実現を目指す目標7と、 大学の学びを紹介する本コーナー。 気候変動への対策を行う目標13に関する大学の学びを取り上げる 目標7は県立広島大学、目標13は創価大学の学びを紹介する。

ŇŧŧŧĬ

説

解

すべての人々の、安価かつ信頼できる持続可能 な近代的エネルギーへのアクセスを確保する

世界のエネルギー消費量が年々増 枯渇や環境への対策が急務 エネルギー問題の解決 資源 なく、 ています。 ギー源としており、 未整備の地域では、

消費量が増加する中、

世界の状況

用できるようにすることであり、 の1つは、世界中の人々が電力を利 ンフラ整備の国際的な支援が進めら そのため、

合を、 再生可能エネルギー 大幅に拡大させることも重要 (* 1 の割 電力を使えていません。

特にアフ 約6億

現在、世界の人口の1割の人々が

、力のサハラ砂漠以南では、

人が電気を利用していないという現

せません。

持続可能な社会を構築する上で欠か

人々の生活や経済活動を支え

え続ける中、

合によっては動物の排泄物をエネル 状があります。 そうしたインフラが 不衛生な生活環境を強いられ 石炭や木炭、 不便なだけでは

れています。 目標了の取り組みの柱

解 説

気候変動及びその影響を軽減するため の緊急対策を講じる

世界の状況

多い国の取り組みが必須 温室効果ガス排出量 の

には、 効果ガスの排出削減に取り組む必要 ばつなどの災害を引き起こしていま 規模での豪雨や洪水、 動による極端現象が、 に比較して約1℃高くなり、 温室効果ガス(*3) そうした気候変動を抑えるため 世界の平均気温は産業革命以前 国際社会が 一体となって温室 猛暑による干 今までにない の排出によ 気候変

> したのです。 均気温の上昇を2℃未満を目標と いて、パリ協定が採択されました。 連気候変動枠組条約締約国会議にお があり、 産業革命以前との比較で、 に抑えることに、 努力目標としては1・5℃未満 2015年12月、 すべての国が合意 世界の平 第 21 回

ます。 削減に積極的に取り組む必要があ い上位(中国、米国、 中でも温室効果ガスの排出量の多 ロシア、日本。 排出量1位の中国は、 * 4 E Ų は 20 年の 排出 イン

*1 自然界に常に存在するエネルギーのことで、常に補充されるもの。環境に優しく、枯渇する心配がない。日本の法令では、太陽光・風力・水力・地熱・太陽熱・大 気中の熱その他の自然界に存在する熱・バイオマスとされている。 * 2「安全性 (Safety)」を前提として、「安定供給 (Energy Security)」「経済効率性 (Economic Efficiency)」「環境保全 (Environmental Conservation)」を目指す取り組み。

54

ります。 ギー源は、化石燃料や原子力が主力 れていますが、 そ100年後には枯渇すると試算さ 可能エネルギー で、太陽光や風力、 な取り組みです。 現在、 İţ 化石燃料は、 地熱などの再生 20%台にとどま 世界のエネル およ

を示す電源構成のうち化石燃料の割

東日本

成度は低く、

特に電気をつくる構成

ネルギーをどれだけ電気エネルギー に寄与します めることも、エネルギー問題の解決 に変換できたかという発電効率を高 技術革新などにより、 再生可能工

日本の状況

再生可能エネルギー普及には 人ひとりの意識改革が必要

線と言えます。 い日本は、 エネルギー資源をほとんど持たな エネルギー政策が生命 しかし、 目標7の達

授などを経て、 愛知工科大学工学部機械システム工学科教 電池研究や太陽光水分解による水素生成の 研究に取り組む。 光エネルギー変換を中心として、新規太陽 2016年から現職 太陽誘電 (株)に勤務後 おおたけ・としひと 大竹才人

生命環境学科 教授 生物資源科学部 県立広島大学

> ギー普及に向けた取り組みの必要性 に満たない状況です 生可能エネルギーの依存割合は2割 が叫ばれていますが、 度を下げるために、再生可能エネル 割近くに達しました。 停止が相次ぎ、火力発電の割合が9 大震災以後は、 合の高さが大きな課題です。 原子力発電所の操業 化石燃料依存 現状では、 再

ギー利用のコストを国民が負担して みの推進には、国民の意識改革が欠 いくことも必要でしょう。 も始まりましたが、 かせません。 める必要があるでしょうし、取り組 ソーラーパネルなどの技術革新を進 政策を推し進めています。 「3E+S (*2)」を掲げ、 ギー基本計画」を策定し、 解決は不可能です。政府は「エネル 枯渇してから対応しようとしても エネルギー問題は、 電力買い取りの制度 再生可能エネル エネルギーが 高効率の いわゆる 様々な

けた[県立広島大学]の学びを P. 56 57 で、 紹介します 目標7の達成に向

> 明しました。同3位のEUでも、 温室効果ガスの排出量を、 発表しています 1990年比で55%削減することを 温室効果ガスの排出量を少なくとも 州議会での政策演説で、 に実質ゼロ (*5) にする方針を表 国連総会の一般討論演説で、 30年までに 60年まで 国内の 欧

日本の状況

再生可能エネルギー 大胆な転換が必要 への

EUを除くと世界5位で、 果ガス総排出量に占める割合は、 常に重いと言えます。 主に燃料の燃焼によるものです。 ネルギー分野が約9割弱で (*6)、 そして、電源構成のうち76%が天 日本の温室効果ガスの排出量は、 国内の温室効 責任は非 工

准教授 かけがわ・みちよ 掛川三千代

創価大学

経済学部経済学科

済学。国連開発計画 課長補佐などを経て、2017 年から現職 ス日本国大使館、外務省、JICAベト 専門分野は、環境政策、環境管理、環境経 ナム事務所、環境省地球環境局国際連携課 (UNDP)、在ラオ

> 生可能エネルギーに迅速かつ大きく 転換していく必要があります。 によるものであるため、 然ガスや石炭などの化石燃料(*7) それらを面

その達成への努力を働きかけていま まっています。 を目指すなど、 でに再生可能エネルギー100%化 自治体の意識は高まってきていま 治体がその方針を表明するなど、 す。20年11月25日時点で175の自 出の実質ゼロを目標とし、自治体に 環境省は、国内での二酸化炭素排 また、リコーグループが50年ま 企業の取り組みも始 各

なってくると言えます 企業の脱炭素化を加速させるために を示しました。今後、 と環境の好循環をつくっていく方針 術の研究開発を促進するなど、 質ゼロにする」と表明し、革新的技 までに、温室効果ガスの排出量を実 は20年10月、 そうした動きを受け、 特に学生や青年の行動が重要に 所信表明演説で 国や自治体 菅総理大臣 5<u>0</u>

P. 58 します。 けた[創価大学]の学びを紹介 50 59 で、 目標13の達成に向

st 3 大気中に含まれる二酸化炭素、一酸化二窒素、メタン、フロンガスなど、地球温暖化の原因とされるガスの総称。 COMBUSTION」 2019 EDITION st 5 二酸化炭素などの温室効果ガスの人為的な排出と、森林等による吸収が均衡する状態。 * 4 IEA 「CO2 EMISSIONS FROM FUEL *6「日本国温室効果ガスインベントリ報 2020年」、温室効果ガスインベントリオフィス編、環境省地球環境局総務課監修。 *7 経済産業省「2019年度エネルギー需給実績(速報)」(2020.11.18)。