13:2□ 既習事項の振り返り

授業 ハイライト 主体的・対話的で 深い学びへ

実践 アクティブ・ラーニング

数学

次導関数」に取り組むための基礎を学んだ。 ろな関数の導関数)」の全6時間のうちの5時間目。 に単元の指導計画を掲載) 探究科3年生「数学Ⅲ」 ・指数関数の微分法」について、次時の で、 「微分第2節 いろい P.

前時までの振り返りとして、長岡先生が既習事項の「積・ 商の微分法」や「合成関数の微分法」の例題を出題し、 生徒は隣の席や前後の席の人と相談しながら考えた。そ の後、長岡先生は4~5人を指名。「どうしてそうなった のか」と問いかけ、答えを導くまでの過程も答えさせた。 振り返りでは、小テストやペアワークを行う場合もある。

長岡先生のアクティブ・ラーニング ブ学習から歩き回るスタイ

生徒の実態に応じて授業を転換

宮城県・私立仙台城南高校

アクティブ・ラーニングの視点を取り入れた授

前任校では、 生徒

一が基礎

教職歴8年の長岡拓郎先生は、

新任

0)

時 か

◎校訓は「規律・清廉・節度」。同一法人の東 北工業大学と連携しながら、生徒一人ひとり の希望進路に応じた指導を展開。社会貢献活 動にも力を入れ、生徒が地域社会とかかわり、 貢献するための様々な活動も行っている。

◎設立 1961 (昭和 36) 年

本的な流れだった。

生徒同士は考えを出し合い

になって問題演習を行うというのが、

授業の基

事項を解説した後、 業を行ってきた。

が4

~5人のグル 長岡先生

2013 (平成 25) 年校名変更

- ◎形態 全日制/探究科·科学技術科·特進 科/共学
- ◎生徒数 約 1,200 人

◎2018年度入試合格実績(現浪計)

国公立大は、東北大、宮城教育大、山形大、 宇都宮大、宮城大などに16人が合格。私立 大は、東北学院大、東北工業大、東京電機大、 神奈川大などに延べ 232 人が合格。

O URL https://sendai-johnan.ed.jp

宮城県・私立仙台城南高校 長岡拓郎 ながおか・たくろう

教職歴8年。同校に赴任して3年目。 進路指導部進学主任。数学科担当。 教師になった当初からアクティブ・ラーニングを推進。

13:35 問題演習1(練習問題)

13:25 本時の学習内容の解説

長岡先生が「対数関数・指数関数の微分法」の例題の解法を 生徒が解法の本質を理解して、応用できるよう、解法 ひとつについて、なぜそのような解法になるのかを問い ながら説明した。また、生徒の数学への関心を高めるた め、「ネイピア数の意味」「オイラーの方程式の数学的な美しさ」 といった発展的な内容にも触れた。

教科書の練習問題に取り組む。生徒は教室内を移動して、ク ラスメートと相談しながら考え、解き終えたら教壇にいる長岡 先生に答案を見せて採点をしてもらう。 3分の2ほどの生徒が 解き終えた段階で、長岡先生は全体に向けた解説を行った。 生徒を指名し、考え方や答えを引き出しながら、課題があれ ば理由とともに示した。

思考の活性化・深化への配慮

合いながら問題演習を行えるようにしました」 ようと、生徒が教室内を自由に移動して、 活動できる生徒を生かして全体の学びにつなげ る意欲的な生徒もいました。そこで、主体的に

考えながらインプットさせる なぜか」を粘り強く問いかけ

まっていきます。質問する側の生徒は、

クラス

表現力が高まるとともに、自分自身の理解も深 やすく伝えられるよう考えて説明することで、

「説明する側の生徒は、クラスメートに分かり

メートが相手であれば、

遠慮なく自分の疑問を

解説を、 ンプットのパートとして、長岡先生が既習事項 置くパートと、アウトプットに重点を置くパ する。そのため、 振り返りと、 ・の2つで構成されている。最初の15分間はイ 長岡先生は、生徒の思考力や表現力を伸ばそ インプットとアウトプットの両立を重視 生徒への問いかけを交えながら行う。 本時の学習内容に関する例題 授業は、インプットに重点を

こともあったためか、思うようにいかなかった と、長岡先生は振り返る。 学習に力を入れたが、生徒の学力層の幅が広い 南高校でも、そうした授業を目指してグループ は「自分で解法を工夫できるのが面白い」といっ ながら問題演習に取り組み、授業アンケートで た感想があったという。 2015年度に赴任した宮城県・私立仙台城 私が解説をしている時は、どの生徒も落ち めていると感じます」

発展問題に皆で協力しながらも 自力で取り組ませ、応用力を育む

集中できない生徒が少なくありませんでした。

方で、メンバーに説明したり、質問したりす

着いて聞いていますが、グループ学習になると、

室全体へと徐々に広がっていった。 が止まっている生徒に解法を説明し始めた。そ 解いていたが、解き終えた生徒が席を立ち、 む。今回の授業では、初めは、自分1人で、 生徒同士が学び合いながら演習問題に取り組 たは前後・左右の席の人と相談しながら問題を 残りの35分間はアウトプットのパートであり、 別の生徒が加わっていき、学びの輪が教 ま 手

解答を採点した後、全体に向けて重要なポイン 腑に落ちていくようです」 トを解説する時間も設けている。2回目は、 ある練習問題だ。長岡先生が生徒一人ひとりの 言えます。そうして、考えが整理され、 問題演習は、2回行う。1回目は、 解法が

と学んでほしいと思っています。そこで、 考えを整理して述べようとする中で、学びを深 も否定せず、指名する生徒を変えながら『なぜ か』を粘り強く聞いています。生徒は、 した生徒を中心に指名し、答えが間違っていて 「数学に苦手意識がある生徒こそ、授業で堂々 自分の

14:05 自己評価

13:55 問題演習2(発展問題)

生徒は、「自己評価シート」に2つの問題演習における自分の 頑張りを10点満点で評価。シートは長岡先生に提出し、先 生が点数を集計。授業終了後、生徒同士の刺激になるよう、 ス全員の自己評価をタブレット端末で見られるようにす 自己評価の低い生徒が多かった単元・分野は、次回の授 業でもう一度解説する。

次に、プリントにある発展的な問題に取り組んだ。ここでも、 生徒は教室内を歩き回り、相談しながら解答を作成。長岡先 生は机間巡視しながら、生徒からの質問に対してヒントを示 したり、定着に課題が見られる生徒に個別指導を行ったりし た。解答は黒板に貼ってあり、生徒はそれをタブレット端末 で撮影し、その画像を見ながら自己採点を行った。

場づくりへの配慮

思考・表現への意欲を引き出す アウトプットへの意識づけを重 ね

のは、 びかけ、問題を早く解き終えた生徒には、 のにするためには、 トプットの重要性を意識させる必要もあった。 と思っている生徒が少なくなかったため、アウ 次第に、学び合いが活性化していったという。 スメートの相談に乗るよう声をかけた。すると 分からないところを質問しやすい雰囲気にする また、数学を「公式や解法を暗記する教科」 そうした授業スタイルにした当初は、生徒が 恥ずかしいことではない」と繰り返し呼 「授業は学ぶためにある。問題が解けない 長岡先生は、 他者に説明できるようにな 「知識・技能を自分のも クラ

かれた紙を見て、自己採点を行う。 き終えた生徒は、黒板に貼られている正解が書 苦戦している生徒を励ましたりする。問題を解 巡視し、生徒たちに考え方のヒントを出したり、 岡先生の自作プリントによる発展問題に取り組 生徒が取り組んでいる間、 長岡先生は机間

テーターに徹しています。 も自力で取り組むことを重視し、私はファシリ 礎事項を活用して、生徒同士が話し合いながら います。一方、発展問題では、 かり定着するよう、私が指導する場を多くして 「練習問題では、どの生徒にも基礎事項がしっ 前半で学んだ基

> る際、 生徒が自分で考え、表現する授業になるよう、 らなければならない」と何度も伝えた。 いるのも、そうした課題意識からだ。 教えすぎない」ことを心がけている 生徒が学びを深めるためには、 長岡先生が生徒への問いかけを重視して 考える面 ほかにも、 解説す

ありましたが、その役割は、 始めた当初は、私が生徒の輪の中に入る場面も さに気づく必要があると思います。 したり、 徒を信じて待つことを大切にしています。 した方が授業は早く進むかもしれませんが、 活性化したりすることです。 生徒の考えを整理 学び合いを 私が解説 生

成果と課題

さらに実りある学び合いを目指し

インプットを充実させていきたい

手応えを感じている。 問題を解くのを止めてしまう生徒がいたが、 自分の意見をまとめ、 えて分かりやすく説明できるようになったとい では、疑問点をまとめ、自ら質問するようになっ 上昇しており、長岡先生はこの授業スタイル るようになった。定期考査や模擬試験の成績も 「どこが分からないのかが分からない」と言って 授業の成果は生徒の姿に表れている。以前は、 学校行事でクラスの決め事を話し合う時も、 教える側の生徒も、 発言する姿が多く見られ 相手の理解状況を踏ま

一学び合いが定着したことで、 私が生徒全員

単元の指導計画

【教科・科目】数学・数学Ⅲ 【分野・単元】微分第2節(いろいろな関数の導関数)【テーマ・作品】三角関数・指数・対数関数・高次の導関数 【設定時数】全6時間の中の5時間目 【単元目標】いろいろな関数の微分計算ができるようになる。

n±	【政化時数】至0時间の中の3時间日 【単元日標】いついつな関数の極力計算ができるようになる。					
時数	学習内容	身につけさせたい資質・能力	授業の流れ	教師の配慮	評価方法	
1	三角関数の 導関数	微分法についての理解を深めるとともに、その有用性を認識し、事象の考察に活用できるようにする。 ①三角関数の和と積の変換公式の確認。【知識、技能】 ②三角関数の導関数の演習を通して、数学的な見方・考え方を習得する。【思考力、表現力】 ③問題演習に学び合いを通して取り組み、他者と問題解決する力を養う。【主体性、協働性】	①② 説問練師題 の内 で で で で で で で で で で で で で で で で で で	内容の 【対話的な学び】解答が終わった生 対話的な学び】解答が終わった生 徒は教師役となり、解き終えていな い生徒に教える。分からない生徒は、 教師役の生徒に聞きに行く。 クラス メートの解答を共有・検討する場を つくる。 【深い学び】教える・教わるという言 採点) 「深に学び】教える・教わるという言 「深にずび」、表述がによって考え	発プ 自シ アイ・カー・ 海の できます はいまま はいまま はいまま かいまま はいまま はいまま はいまま はいまま	
2	三角関数の 導関数	導関数				
3	1					
4	指数関数の 微分法 ネイピア数					
5	指数関数の					
6	高次導関数					

^{*}長岡先生作成の単元の指導計画を基に編集部で作成

学の成績が上がったのだと思います。 そうして、必要な対策が見えてきたことで、 らないのかが明確になります。また、「自己評価 シート」でも、自分の課題を把握できました。 得がいくまで質問していくと、自分が何が分か 題も解けるほど得意になりました。 そ、以前は数学が苦手でしたが、今では応用問 より深まっていったと感じています。だからこ また、クラスメートに説明することで、理解が 論理的に考える習慣が身につきました。 く、身につけた知識・技能を組み は、「なぜか」を問われる場面が多 野尻悠貴さん 長岡先生の授業で

生徒の声

佐々木海七斗さん

長岡先生の

談しやすい雰囲気があります。納 業には、分からないことを皆に相

ます。インプットとアウトプットをバランスよ 定着により力を入れるとともに、身につけさせ る知識・技能の水準を上げる必要性も感じてい く両立させた指導を、今後も追究していきます 「生徒の学力が上がっている今、基礎・基本の 長岡先生は語る。

るよう、インプットを充実させていきたいと、

に示し、今まで以上に実りある学び合いができ

今後は、生徒が自分の考えの根拠をより明確

きるようになりました_ ようになり、各生徒の課題に応じた声かけがで した。その分、生徒一人ひとりに目が行き届く に向けて解説をする時間が大幅に少なくなりま