未来をつくる大学の研究室

最先端の研究を大学の先生が誌上講義!

26

富士川の治水の仕組みを生かしアジア各地の水問題解決に挑む

山梨大 国際流域環境研究センター 砂田憲吾研究室

水はすべての生命の源であり、河川は人類の文明を支える重要な資源の一つである。しかし、その水も時として洪水や水質汚染などにより人々の生活を脅かす。山梨大の砂田憲吾教授は、国内外の河川を対象として水の流れや循環について研究し、安全対策や環境保全、水資源の確保などの課題解決に取り組む。これまで積み重ねてきた富士川の研究成果を生かし、研究対象を国内にとどまらせずアジア各国にも広げている。気象学や環境学、社会・経済学など他分野との連携も活発だ。

フローチャートで分かる砂田研究室

大学院生の 主な出身分野

工学

環境学

◎修士課程の大学院生の 約90%は工学部出身者。 博士課程には、環境工学 などの研究者やアジア地域(インドネシア、ネパ ールなど)から来た研究 者も多い。

研究にかかわる 学問分野と研究内容

○水の循環について研究する水文学・河川工学をベースに、水資源の保全や、洪水・環境対策などの解明・解決を目指す。河川は気象や地質などの要因により状態がさまざまに変化する上、一つの河川が複数の国を通過することが珍しくない。そのため、水管理には政治的配慮も必要となる。また、環境汚染や感染病とのかかわりも密接だ。研究では、環境工学、地域計画、生態学、疫学などの諸分野との連携が欠かせない。

研究成果と社会のかかわり

洪水災害防止

水資源確保

水環境改善

流域地域計画

健康リスク回避

など

◎洪水災害の軽減、環境 汚染物質の流出防止、水 管理政策・公衆衛生政策 のための実証データの提 供、河川工学に精通した 人材の育成などを進め る。

「人の役に立ちたい」と本気で思えるかが大切

水工学分野が求める学生像

正義感・使命感が強い

常識に疑問を持てる

社会の仕組みに興味がある

水や川の管理・制御は、人々の安全や健康に欠かせません。しかし、その研究には華々 しさはありません。水文学や河川工学を志す人には、「自分がやらなければ誰がやる」とい うくらいの正義感やボランティア精神が必要です。また、水文学の応用には政治や経済など、 さまざまな要因が絡み合うため、定説や常識に疑問を持つ批判的な精神を持つことや、世 の中の仕組みに思いを馳せることも大切になります。

更に、諸外国の福祉に貢献し得る専門知識が無くてはいけません。かつて、アジア各国 に日本人が「支援」という名目で行くだけで喜ばれた時期がありました。今やアジア諸国の 研究は大きく進歩し、日本を超える日も遠からずやって来るでしょう。専門分野の研究を通 して、日本とアジア諸国とで協働し、相互の繁栄に貢献したいという気持ちを持ち続けられ る人材が求められていくと思います。

グローバルに活躍するためには英語力も欠かせません。外国の人々とコミュニケーション を取り、良い関係を築いていく必要があるからです。

現在の学問では、異なる分野との共同研究が日常的に行われていま 高校生へのメッセージ す。研究者には専門に偏らない幅広い教養が求められます。ただし、

それは自身の専門があってのこと。専門分野を極めた上で、それを軸に出来るだけさまざまな分 野に視野を広げ、貪欲に知識を吸収してほしいと思います。

ませんでした。「どうせならほかの

当時、専攻する学生があまり

人とは違うことをしたい」と考え

比べて研究に取りつきにくいとい とする水理学や河川工学は他分野に

わ

分かれます。 する計画系など、

中でも、

水を研究対

象

土木計画や国

[土計画などを研究

究科土木工学専攻修了。 拠点リーダーも務める。 編著書に アリゾナ大客員研究員、 現在、水文・水資源学会会長、山梨大グローバルCOEプログラム 『アジアの流域水問題』

山梨大大学院教授。国際流域環境研究センター長。山梨大大学院工学研 東京工業大助手、 (技報堂出版)な 山梨大助教授、

表方 教授 Sunada

研究を志したきっかけ

などちらかと言え

環を研究対象とする水文学

(すい

効果的な河川対策など、

水の

語や社会が得

は

高校時

代

指

す

際には、

雨

量と川

0

流

n

0)

関

人の生活や福祉に 貢献できる 仕事がしたい

野に進 ば文系人間でした

当時はまだ新しい学問領域

域で「みず

ず

んがく)を追究しようと考えました。

いうと、 なぜ理系の土木分 んだのかと 何よりも

社会に直接役に

した。

立つ仕事をしたい」と思ったからです。

土木は、

橋や建築物を研究する構

研究内容

土質や基礎工などを扱う地盤

武田信玄の優れた 河川対策を 科学的に検証

さまざまな分野に

0

す。 する「富士川」 支える一 より人々の生 は、 数の急流河 地を南北に縦 稲作や水運 地元・甲 方、 日 Ш 活 で で 本 を 13 断 府

何 度も 氾為 濫し、 地域の 人々 13

過去に 係について研究したのです。 いをもたらしてきました。 0) 流 れや制料 御、 雨や土砂と その 0) 関 富

士川

私は水工学の分野に進んだのです。

そして、

水の速さや圧力など水に

富士川 したが、 玄は、 築い 戦国時代に甲斐を治めていた武 向 研 、たり、 究を続けるうちに、 ける必要があると考えまし 川の本川 民政に優れた手腕を発揮 河川 Ш の付け替え工事を行 である釜無川に堤 対策もその一 歴史に つでした。 しま 防 田 b 目

生活や福祉に貢献したいと思うよう

になったのです。そこで、

研究者を

Ш れ

や水の を物理

研 性的に

究を通じて直接、

人 マタの 社会で生かすにはどうしたら良

11 0

を

いて研究するうちに、

この

研

究を

か考えるようになりました。

水の流

解 明

するだけでなく

分野に身を投じる決心をしまし えって意欲をかき立てられ、 ぶんがく」と間違えて読む人もいま 研究者が少なかったことに 最初に研究し 新 た。 Ĺ た

精度の高い降水予測が出来る

り組んでいました。 河 川の氾濫に対して果敢に取

機能しています。 る一連の治水対策を、 わせで巧みに防いでおり、 信玄堤は甲府盆地に発生する激しい てもそん色ないことが分かりました。 証したところ、 フィールドワークにより科学的に検 この「信玄堤」として知られてい 支川の変更や施設の組み合 現代の技術と比較し 模型実験や 今日でも

この堤防は川に沿って直線的に築か 雁のようなV字型の堤防を組み合わ れたのではなく、 と呼ばれる堤防です。 せて築かれたことです。V字の部分 治水施設が造られました。「雁堤」 後には、富士川河口近くにも優れた 更に、信玄堤築造から1世紀以上 群れをなして飛ぶ 興味深いのは

> 弱めるのです。 力を殺し、 巻きます。 在したのは驚くべきことです。 450年も前にこのような技術が存 しているわけです。 で支えるのではなく、 に入りこんだ水は反時計回りに渦を 堤防にかかる水の勢いを その水が流れている水の 流れる水を直接堤防 今から350 水で水を制御

研究内容 水管理には 技術と人材、政治が 大きくかかわる

問題を抱える河川流域を選び、 水・水不足・水質・環境問題など水 者となりました。アジア各国から洪 の把握と分析を進め、問題解決のた 研究実績が認められ、 の政策を提示するのが目的です。 研究の結果、 域の流域政策につ いて研究していま 共同で、アジア地 気象研究所などと 大、土木研究所や 私が研究統括 富士川などの 実態

あることが見えてきました。 情報の共有、 治が大きくかかわり、 制御技術だけでなく、 例えば、ウズベキスタン、 人材育成などが必要で 流域国家の政 体系的な計画 カザフ

> す。 も含まれているのです。 ように、 ない事態に陥っているのです。この の生活用水である尊い水が利用でき タンの塩湖に流入しています。 が、貯め切れず、一部はウズベキス ために別のダムに貯めようとします を冬期の発電用に独占してしまいま 用に造られた大型のダム貯水池の水 ギスは、元々下流地域の夏期の灌漑 国に任されました。最上流国の 生したことで、 ビエト連邦が崩壊し、 邦を流れていました。しかし、 ル スタンを経由してアラル海に注ぐシ 大量に発生する河川流量を調節する ダリア川は、 下流のカザフスタンでは冬期に 河川管理には政治的な問題 かつて旧ソビエト連 河川の管理は流 新しい国 人々 [が誕 旧 域各 キ

2003年から

東京大や鳥取

を描いてほしいと思います。 うことに思いを馳せて、 が社会のために何が出来るのかとい らです。 活に直接役立つところを見られるか ことながら、 こられたのは、 せん。それでも、私が研究を続けて はやされるような華々しさはありま 河川や水の研究には、 高校生の皆さんには、 自分の研究が人々の生 学問の楽しさもさる 将来の進路 世間でもて 自分

水の管理には、

川の

● 水理学

り扱う。河川工学や水資源工学、 る力学的な諸問題を扱う学問で、水の 工学などの基礎。 運動の中でも水の流れと波の二つを取 土木工学の一分野。水の運動に関す

2 水文学

野に入れた領域が対象となる。 土質との関係、人間活動の影響まで視 水資源管理など多岐にわたる。雨量や 学問分野。研究対象は、降水、 地球上における水の循環を研究する 河川

❸シルダリア川

大級の川。 天山山脈を水源とする中央アジア最

リグラム以上の湖。イスラエルとヨル ダンにまたがる死海などが有名。 湖水の塩分が1リットル中500ミ

気象データに基づき 河川の氾濫を予測

ŋ

橋本雅和さん Hashimoto Masakazu 山梨大大学院医学工学総合教育部 国際流域環境科学特別教育プログラム修士課程2年 〈千葉県立安房高校卒業〉

して、 修士課程1年次では、 雨量から河 河川があり、 Ш 時々、 0)

誤を重 雨水が町に達するまでに地下を通る ためには、 きます。 か 予測することです。 氾濫が起こるか、 量や雨 焦点を当てることで、 嵵 短縮できることに気付きました。 か、 私が目標にしたの 間 コンクリートの上を流れるの 0) 一ねるうちに、「何分後 計算方法を工夫し、 さまざまな要素が関係して 予測よりも、氾濫 の強さはどの程度 どこで雨が降ったのか それまで50分かかって 一分一秒でも早く 氾濫を予測する は、 予測 いつどこで 0 なの 試行錯 「規模_ の時間 とい か

初は

機

|械工学に進もうと考えまし

になっていたこともあ

雨

校時代、

口

ボ

1

が 話題 当

進んだのですかけている。

しかし、

自分の将来を想像した

口

ボ

ットの分野で活躍してい

学に注目しました。

その結果、

「分には合っていると思

持ち」のように、

人には気付

かれな 下の

けれども

世の

中の

役に立つ仕事が

んでした。それよりも

「縁の

Ĥ

る姿を思い浮かべることが出来ませ

教えてください現在の研究内容を

学を決めました。

と環境を併せ持つ学部に進みた ズアップされた時期でもあり、

山梨大の土木環境工学科

へ進

しも、

環境分野が大きくク

口

一分に短縮することが

出

土木

たのです。 た予測を30

修士課程2年次から

は、

バ

ン

,の研 グラ

町に浸水被害をもたらしています。 ´組みました。 '間を予測するシステムの開発に取 甲府市内に濁川という都市 氾濫の規模や 濁川を対象と 氾濫して

お願いします。高校生へのメッセージ

が最終目標です。

計

画を推進できるように支援する

クを考慮した安全かつ効率的な都

域を明らかにすることで、

健康リス

ころです。

感染症が起こりやすい

地

染症や細菌の基礎を勉強していると

で、 工

フィー

ルドワークに備えて、

感

一融合の

研究は初めての経験な

ちは皆、 研究室に集まって どうしたら社会の役 いる人た

0

に話をすることは出来なかったと思 来について考え、やりたい分野に進 自身が進路を決める時に、 仲間たちと熱く語り合えるのは、 に立てるのかを真剣に考え、 います。 分野に打ち込んでいる人たちと真剣 ト工学を選んでいたら、 ら」という中途半端な理由でロ んだからだと思います。 **゙**カッコいいから」 「はやっている 究に取り組んでいます。 本気でそ 高校時代に 本気で将 そういう 本気 ボ

の関係について調べる予定です。

医

究者と共同で、 デシュを訪れ、

河川の氾濫と感 医学や環境工学

染

や学科を選んでください。 はきっと、素晴らしい仲間との に素直になり、 世 高校生の皆さんも、 情熱を傾けて打ち込める学 が待っていると思います。 本当に進みたい学 自分の気持 その 出 先

●高校時代は部活動で柔道に熱中し ていました。同学年の部員は5人で、 初心者は私だけ。最初は投げられっ放 しでしたが、みんなに追いつこうと夢 中で練習しました。柔道では礼儀や感 謝の気持ちなど、精神面でも多くを学 びました。中でも心に残っているのは、 顧問の先生の「普段の生活が試合に 出る」という言葉です。怖い先生の前 では良い子でも、優しい先生の前では いい加減になる。そういう人は試合で 強い相手に対してそこそこの力を出せ ても、勝てそうな相手には見くびって、 かえって自分の力を出し切れない。い つでも自分の柔道をするためには、普 段の生活でも常に本当の自分で勝負し

なければならない、と言われました。 勉強も研究も同じだと思います。常 に本気で取り組むから成果が出るし、 困った時に周りの人が支えてくれる。 皆さんも本気で取り組める道を見つ け、全力でぶつかってください。

の高校時代

普段の生活から

本当の自分で勝負!